Multijunction PV Team

CO2-free electricity
Developing Ultra-High-Efficiency Solar Cells to Maximize Power Generation within a Limited Area

Multijunction SCs are conventionally used in a limited range of areas such as artificial satellites. We develop fabrication technologies to reduce the cost of these devices, as well as to reduce the weight and increase the power generation capacity of existing Si SCs.

SCs: Solar Cells

Multijunction PV Team

Research themes

  • R&D in low-cost fabrication techniques for ultra-high efficiency III-V semiconductor SCs (hydride vapor phase epitaxy)
  • Work to realize low-cost bonding technology (smart stack) for various SCs
  • R&D in very thin Si heterojunction SCs with high efficiency
  • R&D in innovative passivating contacts for Si SCs
  • Development of Si nanocrystal-perovskite hybrid SCs
  • R&D for higher performance of Si SCs for building integrated photovoltaics

Concept for social contributions and implementation

Realizing PV-powered vehicles that drive using only electricity generated from on-vehicle solar panels, with no need for charging from the existing electric power system.

PV panels integrated into building windows and facades for realizing Zero Energy Buildings (ZEB).

Replacing existing PV panels with higher performance PV panels for increasing power and energy generation.

Research Team Leader / Greetings

Leader

SUGAYA Takeyoshi

Multijunction SCs featuring multiple combined cells are extremely efficient, but they have not been widely adopted due to restrictive manufacturing costs. Our HVPE and smart stack technologies realize the low-cost manufacturing of multijunction SCs at an unprecedented level worldwide. We will further refine these technologies and bring them to practical implementations.

SUGAYA Takeyoshi

Members

Member

ISHIZUKA Shogo

Member

KOIDA Takashi

Member

MIZUNO Hidenori

Member

KAMIKAWA Yukiko

Member

NISHINAGA Jiro

Technical staff

KATOU Shunichi

Technical staff

KUMAGAI Hideo

Technical staff

SATOU Yoshiki

Technical staff

TANABE Mayumi

Assistant

FUJITA Akemi

Assistant

YONEKAWA Rie

Low-cost Ⅲ-Ⅳ solar cells fabricated using hydride vapor phase epitaxy (HVPE) and smart stack technology

Multijunction SCs featuring multiple combined cells are extremely efficient, but they have not been widely adopted due to their manufacturing costs. We have been working on the epitaxial growth technology known as HVPE (hydride vapor phase epitaxy) which can grow materials at a cost of around a tenth of previous methods, and smart stack technology which is a low-cost bonding technique to use low-cost bottom cells such as Si or CIGS. Our target is 35% for conversion efficiency and ¥200/W for the fabrication cost. We will be able to mount these SCs on unmanned aerial vehicles and cars.

 We have achieved world record conversion efficiencies of 28.3% for HVPE grown SCs, and 28.1% for CIGS based 3-junction SCs fabricated using smart stack technology.

Development of high-efficiency and low-cost crystalline Si solar cells, Si-based multijunction solar cells, and advanced Si cell/module technologies for novel applications. 

In Si solar cells, which are the most widely used type of solar cell at present, it is desirable to develop low-cost materials and processes that enable high efficiency devices, as well as advanced cell/module technologies for novel applications.

So far, we have demonstrated 23.3% efficient ultrathin crystalline Si solar cells (~50 µm) whereby the overall thickness is as low as one third of that of a conventional solar cell. This would enable not only a significant reduction in Si consumption but also providing flexible solar cells that can fit onto curved surfaces such as the walls of a building. Furthermore, we have developed various types of novel Si solar cell architectures including a Si solar cell made by depositing thin and inexpensive materials such as titanium oxide (TiOx) on Si, industrially feasible perovskite-Si tandem solar cells, strip-type Si solar cells and colored Si solar cell modules particularly aimed at building-integrated photovoltaic applications.

Video

Research

Grand Renewable Energy 2022 International Conference Oral Presentation Award

Grand Renewable Energy 2022 International Conference Oral Presentation Award

The International Photovoltaic Science and Engineering Conference (PVSEC-33) Best Paper Award

The International Photovoltaic Science and Engineering Conference (PVSEC-33) Best Paper Award

Makita, K.; Mizuno, H.; Sai, H.; Oshima, R.; Shoji, Y.; Müller, R.; Beutel, P.; Lackner, D.; Benick, J.; Hermle, M.; Dimroth, F.; Sugaya, T., GaAs//Si Multijunction Solar Cells Fabricated via Mechanical Stack Technology Using Pd Nanoparticles and Metal-Assisted Chemical Etching, IEEE J. Photovolt. 2023, 13, 105-112, 10.1109/JPHOTOV.2022.3215263

Published OCT 25 2022

pv magazine | Three-junction III-V solar cell with 29.3% efficiency

Highlights

Contact

Contact