Thermoelectrics and Thermal Management Team
We develop thermoelectric materials and thermoelectric energy conversion technologies that convert waste heat directly into useful electricity/accurately control temperature using electric current, thereby promoting efficient energy use.
Research themes
- Achieving high performance in thermoelectric materials and modules, and developing these with earth-abundant and low-toxicity elements
- Improving the durability of thermoelectric modules, and developing high-accuracy evaluation methods
- Realizing smart thermal management using thermoelectric conversion technologies (thermoelectric power generation and Peltier cooling)
Research Team Leader / Greetings
OHTA Michihiro
Technologies for optimal heat control still have a way to go compared to electricity. This area is promising from both academic and engineering perspectives. Thermal energy often goes to waste and is released to the environment unused. We are one of the few research teams in the world conducting a wide range of research on thermoelectric energy conversion technologies to produce electricity from this “Mottainai” unused heat. By fully utilizing heat, we will help promote the efficient use of energy.
Members
MIYATA Masanobu
ISHIDA Takao
YAMAMOTO Atsushi
SAUERSCHNIG Philipp
FUNAHASHI Ryoji
AMAGAI Yasutaka
OKAWA Kenjiro
MIKAMI Masashi
TAKAHASHI Tooru
TANITA Takeo
FUJIMOTO Naoko
MOTOKI Mihoko
HAYASHI Yukiko
YAMAUCHI Naofumi
Contributing to energy conservation and low carbon emissions through the effective heat use
60% of the primary energy supply is disposed without effective utilization in the form of heat (waste heat). Furthermore, improving the efficiency of thermal management is necessary to achieve energy conservation in various devices and processes. Solid-state semiconductor-based thermoelectric modules allow to directly convert waste heat into valuable electricity (thermoelectric power generation) or can be used for highly accurate temperature control using electric current (Peltier cooling). Our team focuses on all aspects of thermoelectric conversion technologies, from cutting-edge materials, modules, power generation demonstrations, and evaluations, in order to promote their widespread use. Advanced manufacturing, analysis, and evaluation facilities are available in our laboratory to promote research and development of thermoelectric technologies.
Focusing on all aspects of thermoelectrics, from materials, modules, and evaluations
①Improvement in figure of merit of materials using state-of-the-art materials science
Our team focuses on achieving high efficiency in thermoelectric materials through the advanced control of heat and electrical transport and developing new thermoelectric materials made from low resources elements (sulfur, magnesium, etc.) and organic materials.
②Development of module and power generation demonstration
Our team are developing electrode fabrication technology for improving the thermal and electrical contacts between interfaces and investigating the degradation behavior of thermoelectric modules to highly reliable power generation. We are interested in developing thermoelectric systems by integrating related heat technologies (heat transfer, heat radiation, etc.).
③Advanced evaluation methods
One important challenge is the development of advanced evaluation technology to support fair thermoelectric market growth. We developed reference module are conducting interlaboratory testing of thermoelectric conversion in international framework.
④Bridging the technological valley of death for social implementation
We aim to commercialize thermoelectric technologies through a wide range of collaborative efforts with companies in Japan. For example, we have supported the establishment of Mottainai Energy Co., Ltd. (AIST startup company).
Video
Research
Highlights
Research Teams
- Organic-inorganic Hybrid PV Team
- Multijunction PV Team
- Thermoelectrics and Thermal Management Team
- Fundamentals of Ionic Devices Research Team
- Artificial Photosynthesis Research Team
- Hydrogen Production and Storage Team
- Carbon-based Energy Carrier Research Team
- Smart CO2 Utilization Research Team
- Resource Circulation Technology Research Team
- Environmental and Social Impact Assessment Team